Camera Sensors
MuJoCo itself expects users to set up a working OpenGL context.
Create a camera and render
xml = """
<mujoco>
<worldbody>
<geom name="red_box" type="box" size=".2 .2 .2" rgba="1 0 0 1"/>
<geom name="green_sphere" pos=".2 .2 .2" size=".1" rgba="0 1 0 1"/>
</worldbody>
</mujoco>
"""
# Make model and data
model = mujoco.MjModel.from_xml_string(xml)
data = mujoco.MjData(model)
# Make renderer, render and show the pixels
renderer = mujoco.Renderer(model)
media.show_image(renderer.render())
Depth Rendering
# update renderer to render depth
renderer.enable_depth_rendering()
# reset the scene
renderer.update_scene(data)
# depth is a float array, in meters.
depth = renderer.render()
# Shift nearest values to the origin.
depth -= depth.min()
# Scale by 2 mean distances of near rays.
depth /= 2*depth[depth <= 1].mean()
# Scale to [0, 255]
pixels = 255*np.clip(depth, 0, 1)
media.show_image(pixels.astype(np.uint8))
renderer.disable_depth_rendering()
Segmentation Rendering
# update renderer to render segmentation
renderer.enable_segmentation_rendering()
# reset the scene
renderer.update_scene(data)
seg = renderer.render()
# Display the contents of the first channel, which contains object
# IDs. The second channel, seg[:, :, 1], contains object types.
geom_ids = seg[:, :, 0]
# Infinity is mapped to -1
geom_ids = geom_ids.astype(np.float64) + 1
# Scale to [0, 1]
geom_ids = geom_ids / geom_ids.max()
pixels = 255*geom_ids
media.show_image(pixels.astype(np.uint8))
renderer.disable_segmentation_rendering()
Camera Matrix
def compute_camera_matrix(renderer, data):
"""Returns the 3x4 camera matrix."""
# If the camera is a 'free' camera, we get its position and orientation
# from the scene data structure. It is a stereo camera, so we average over
# the left and right channels. Note: we call `self.update()` in order to
# ensure that the contents of `scene.camera` are correct.
renderer.update_scene(data)
pos = np.mean([camera.pos for camera in renderer.scene.camera], axis=0)
z = -np.mean([camera.forward for camera in renderer.scene.camera], axis=0)
y = np.mean([camera.up for camera in renderer.scene.camera], axis=0)
rot = np.vstack((np.cross(y, z), y, z))
fov = model.vis.global_.fovy
# Translation matrix (4x4).
translation = np.eye(4)
translation[0:3, 3] = -pos
# Rotation matrix (4x4).
rotation = np.eye(4)
rotation[0:3, 0:3] = rot
# Focal transformation matrix (3x4).
focal_scaling = (1./np.tan(np.deg2rad(fov)/2)) * renderer.height / 2.0
focal = np.diag([-focal_scaling, focal_scaling, 1.0, 0])[0:3, :]
# Image matrix (3x3).
image = np.eye(3)
image[0, 2] = (renderer.width - 1) / 2.0
image[1, 2] = (renderer.height - 1) / 2.0
return image @ focal @ rotation @ translation
use the camera matrix to project from world to camera coordinates:
# reset the scene
renderer.update_scene(data)
# Get the world coordinates of the box corners
box_pos = data.geom_xpos[model.geom('red_box').id]
box_mat = data.geom_xmat[model.geom('red_box').id].reshape(3, 3)
box_size = model.geom_size[model.geom('red_box').id]
offsets = np.array([-1, 1]) * box_size[:, None]
xyz_local = np.stack(list(itertools.product(*offsets))).T
xyz_global = box_pos[:, None] + box_mat @ xyz_local
# Camera matrices multiply homogenous [x, y, z, 1] vectors.
corners_homogeneous = np.ones((4, xyz_global.shape[1]), dtype=float)
corners_homogeneous[:3, :] = xyz_global
# Get the camera matrix.
m = compute_camera_matrix(renderer, data)
# Project world coordinates into pixel space. See:
# https://en.wikipedia.org/wiki/3D_projection#Mathematical_formula
xs, ys, s = m @ corners_homogeneous
# x and y are in the pixel coordinate system.
x = xs / s
y = ys / s
# Render the camera view and overlay the projected corner coordinates.
pixels = renderer.render()
fig, ax = plt.subplots(1, 1)
ax.imshow(pixels)
ax.plot(x, y, '+', c='w')
ax.set_axis_off()