Camera Sensors
Creating camera sensors and read data from it.
Create a Camera
ROBOT_CAM_PRIM_PATH = "/robot/camera_link/robot_cam"
camera = Camera(
prim_path=ROBOT_CAM_PRIM_PATH,
frequency=15,
resolution=(1920, 1080),
translation=np.array([-0.04, 0.0, 0.05]),
orientation=np.array([0.0, 0.0, 0.0, 1.0]),
)
In simulation, obtain camera data with:
res = camera.get_current_frame()
However, res
will be an empty list by default if you don't specify what you want by calling:
camera.add_motion_vectors_to_frame()
camera.add_distance_to_image_plane_to_frame()
camera.add_bounding_box_2d_tight_to_frame()
...
To see what you can get here, refer to this page. Note that if you want to obtain depth, you need distance_to_image_plane
rather than distance_to_camera
.
Action Graph for Publishing Camera Data to ROS2
You need to first obtain the current stage (you can get it by calling self.get_stage()
in derive classes of BaseSample
) as stage
. You also need to import:
import omni.graph.core as og
To create the graph:
CAM_GRAPH_PATH = "/robot/camera_graph"
ROBOT_CAM_PRIM_PATH = "/robot/camera_link/robot_cam"
keys = og.Controller.Keys
(camera_graph, _, _, _) = og.Controller.edit(
{
"graph_path": CAM_GRAPH_PATH,
"evaluator_name": "push",
"pipeline_stage": og.GraphPipelineStage.GRAPH_PIPELINE_STAGE_ONDEMAND,
},
{
keys.CREATE_NODES: [
("Context", "omni.isaac.ros2_bridge.ROS2Context"),
("OnImpulseEvent", "omni.graph.action.OnImpulseEvent"),
("OnPlaybackTick", "omni.graph.action.OnPlaybackTick"),
("createViewport", "omni.isaac.core_nodes.IsaacCreateViewport"),
("getRenderProduct", "omni.isaac.core_nodes.IsaacGetViewportRenderProduct"),
("setCamera", "omni.isaac.core_nodes.IsaacSetCameraOnRenderProduct"),
("cameraHelperRgb", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
("cameraHelperDepth", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
("cameraHelperInfo", "omni.isaac.ros2_bridge.ROS2CameraHelper"),
],
keys.CONNECT: [
("OnPlaybackTick.outputs:tick", "createViewport.inputs:execIn"),
("Context.outputs:context", "cameraHelperRgb.inputs:context"),
("Context.outputs:context", "cameraHelperDepth.inputs:context"),
("Context.outputs:context", "cameraHelperInfo.inputs:context"),
("createViewport.outputs:execOut", "getRenderProduct.inputs:execIn"),
("createViewport.outputs:viewport", "getRenderProduct.inputs:viewport"),
("getRenderProduct.outputs:execOut", "setCamera.inputs:execIn"),
("getRenderProduct.outputs:renderProductPath", "setCamera.inputs:renderProductPath"),
("setCamera.outputs:execOut", "cameraHelperRgb.inputs:execIn"),
("setCamera.outputs:execOut", "cameraHelperDepth.inputs:execIn"),
("setCamera.outputs:execOut", "cameraHelperInfo.inputs:execIn"),
("getRenderProduct.outputs:renderProductPath", "cameraHelperRgb.inputs:renderProductPath"),
("getRenderProduct.outputs:renderProductPath", "cameraHelperDepth.inputs:renderProductPath"),
("getRenderProduct.outputs:renderProductPath", "cameraHelperInfo.inputs:renderProductPath"),
],
keys.SET_VALUES: [
("createViewport.inputs:viewportId", 0),
("createViewport.inputs:name", "realsense_cam"),
("cameraHelperRgb.inputs:frameId", "sim_camera"),
("cameraHelperRgb.inputs:topicName", "affordbot/grasp_rgb"),
("cameraHelperRgb.inputs:type", "rgb"),
("cameraHelperDepth.inputs:frameId", "sim_camera"),
("cameraHelperDepth.inputs:topicName", "affordbot/grasp_depth"),
("cameraHelperDepth.inputs:type", "depth"),
("cameraHelperInfo.inputs:frameId", "sim_camera"),
("cameraHelperInfo.inputs:topicName", "camera_info"),
("cameraHelperInfo.inputs:type", "camera_info"),
],
},
)
set_targets(
prim=stage.GetPrimAtPath(f"{CAM_GRAPH_PATH}/setCamera"),
attribute="inputs:cameraPrim",
target_prim_paths=[ROBOT_CAM_PRIM_PATH],
)
In version 2022.2.1 the point cloud utility is very slow, assuming known camarea parameters, you can use the following script to generate point cloud. Notice the convention difference for isaac sim cameras.
import numpy as np
import cython
from cython.parallel import parallel, prange
@cython.boundscheck(False)
@cython.wraparound(False)
def compute_points(int height, int width, float[:,:] depth, float fx, float fy, float cx, float cy):
cdef points_cam = np.zeros((height, width, 3), dtype=np.double)
cdef double[:, :, :] result_view = points_cam
cdef int v, u, k
cdef float d
with nogil, parallel():
for v in prange(height, schedule='static'):
for u in range(width):
d = depth[v,u]
# https://docs.omniverse.nvidia.com/app_isaacsim/app_isaacsim/reference_conventions.html
# rotate around x axis 180
# point[2] = -d *100.0
# point[0] = -( u - cx ) * point[2] / fx
# point[1] = (v - cy) * point[2] / fy
result_view[v, u, 2] = -d *100.0
result_view[v, u, 0] = -( u - cx ) * result_view[v, u, 2] / fx
result_view[v, u, 1] = (v - cy) * result_view[v, u, 2]/ fy
return points_cam